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Abstract 

 
Searching data streams has been traditionally very 

limited, either in the complexity of the search or in the 
size of the searched dataset.  In this paper, we investigate 
the design and optimization of constructs that enable SQL 
to express complex patterns. In particular we propose the 
RSPS (recursive sequential pattern search) algorithm that 
inspired by the KMP (Knuth-Morris-Pratt) string 
matching algorithm and exploits the inter-dependencies 
between the elements of a sequential pattern to minimize 
repeated passes over the same data. Performance gains 
derived from a set of experiments and a sensitivity 
analysis for the RSPS are also discussed. Our 
experimental results demonstrate impressive speedup. 

1. Introduction 
Many applications in the commercial or scientific 

domains share the need for processing and analyzing 
sequential or stream data. Examples include analysis of 
data gathered from sensor networks, the stock market, 
telecommunications networks, seismic activity, and 
remote sensing. At times, the only feasible solution to 
understanding large volumes of data is to search for 
patterns of interest. This is an especially difficult task 
when the patterns of interest are complex in nature – in 
the sense that traditional constructs available in SQL may 
be unable to express these rich patterns.  Facilities such as 
datablades have increased the expressive power of 
database query languages. However, many applications 
remain which need a more expressive language for 
describing their patterns of interest.  Another challenge 
with most such complex applications is that data needs to 
be processed on the fly. The limited buffer needed for 
keeping the history of the time-series is thus another 
problem that needs to be addressed. An implementation 
of the pattern detection mechanism may be required 
which precludes keeping the entire history of the 
sequence in fast memory. 

An extension of SQL with the ability to query time-
series databases with more flexibility and power than 
Informix datablades [13] and SRQL [20] has been 
proposed before. Specifically in [23] Sadri et al introduce 
an extension of SQL, SQL-TS, to express sequential 
patterns, and study how to optimize search queries for 
this language. They exploit the inter-dependencies 

between the elements of a sequential pattern to minimize 
repeated passes over the same data. 

While the technique outlined in [23] and [22] is 
powerful enough to find many types of patterns, it lacks 
the power necessary for expressing some key interesting 
queries. For instance, SQL-TS is not designed to search 
for patterns including nested stars (a recurring pattern 
inside another recurring pattern).  

In this paper we extend the Optimal Pattern Search 
(OPS) algorithm [23] (termed RSPS) and present a 
general algorithm which gives SQL-TS the capability to 
look for more complex patterns such as nested-star 
patterns. RSPS provides a general framework to search 
for any pattern in SQL level. Preliminary results are 
encouraging and demonstrate the more expressive power 
of RSPS, and a dramatic speedup in operations. 

In the next two sections, we briefly review SQL-TS 
and the OPS algorithm. We will not address them in 
detail as they have already been discussed in [23]. Our 
contribution here is to propose and explain the RSPS 
algorithm. Key research issues are opened up via our 
formulation of RSPS, as our overall goal is to address 
search for complex patterns, such an extension needs a 
radical modification. 

 

2. SQL-TS 
Structured Query Language for Time Series (SQL-

TS), introduced in Sadri et al [23],  adds a number of 
simple and useful  constructs to SQL for specifying 
complex sequential patterns. SQL-TS is identical to SQL, 
except for the following additions to the FROM clause: 
• a SEQUENCE BY clause specifying the sequencing 

attributes, and 
• a CLUSTER BY clause specifying the grouping 

attributes, similar to GROUP BY. Each group 
indicates a separate sequence. 

By way of an example, consider the following table of 
HTTP requests over the network: 

 
CREATE TABLE network (  
srcIP Varchar(15), 
srcPort Varchar(5), 
destIP Varchar(15), 
destPort Varchar(5), 
packet Integer (50), 
date Date) 
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The following SQL-TS query (Example 1) finds the 
maximal periods in one day intervals, in which the 
number of incoming packets jumps more than 30%, and 
returns the source IP address and these periods: 
Example 1: Using the FROM clause to define a pattern. 

 
SELECT X.srcIP, X.date, Z.previous.date 
FROM    network 

CLUSTER BY srcIP; 
SEQUENCE BY date 
AS (X,*Y, Z) 

WHERE Y.packet > Y.previous.packet 
  AND Z.previous.packet > X.packet*0.30    
 

The AS clause – which in SQL is used mostly to 
assign aliases to table names – is used to specify a 
sequence of tuple variables from the specified table. 
Tuple variables from this sequence can be used in the 
WHERE clause to specify the conditions for expressing 
the pattern, and in the SELECT clause to specify the 
output. 

A key feature of SQL-TS is its ability to express 
recurring patterns by using a star operator.  However, the 
star operator can be applied only to simple patterns and 
not to complex patterns that contain sub-patterns.  Our 
approach here will improve the power of SQL-TS by 
supporting recurring complex patterns, as detailed in 
Section 4. 

3. Optimal Pattern Search (OPS) 
The Optimal Pattern Search algorithm (OPS) was 

proposed by Sadri et al [23] for optimization of sequential 
queries in SQL-TS, via extending the KMP text matching 
algorithm [17]. The motivation behind development of 
OPS was the realization that finding sequential patterns in 
databases is somewhat similar to finding phrases in text. 
As such optimization techniques in OPS were inspired by 
string-matching algorithms. Possible choices that were 
considered as the basis for OPS were well-known string-
matching algorithms with the best order of complexity in 
average cases. These included the Karp-Rabin algorithm 
[14], the Boyer-Moore pattern matcher [5] and the KMP 
algorithm [17]. Exhaustive experiments [28] 
demonstrated the performance superiority of KMP in 
most typical cases. Because of its good performance, and 
its independence from the alphabet size, and mostly 
because it generalizes to problems such as real-time string 
matching [12], KMP provides a natural basis for dealing 
with the more general problem of optimizing database 
queries on sequences. The generalization of KMP 
however presents difficult challenges: rather than 
searching for strings of letters (usually from a finite 
alphabet), we now have to search for sequences of 
structured tuples qualified by arbitrary expressions of 

propositional predicates involving arithmetic and 
aggregates.  

Following is a brief summary of OPS: Given an input 
stream and a sequential query, suppose that while 
searching for the sequential pattern on an input stream, a 
mismatch occurs at the jth position of the pattern. Speedup 
is achieved by tracking two items, shift(j) and next(j), that 
help reset the position trackers (i and j) to optimize values 
after the mismatch. Shift(j) determines how far the pattern 
should be advanced in the input, and next(j) determines 
from which element in the pattern the checking of 
conditions should be resumed after the shift. To compute 
shift(j) and next(j), OPS begins by capturing all the 
logical relations among pairs of the pattern elements 
using a positive precondition logic matrix θ, and a 
negative precondition logic matrix φ. These matrices are 
both of size m, where m is the length of the search pattern. 
The θjk and φjk elements of these matrices are only defined 
for kj ≥ ; thus they are lower-triangular matrices. θjk and 
φjk are defined as follows: 
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Here pi is the predicate at location i. For instance, 
consider a pattern with the following predicates as its 
elements: 
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The matrices θ and φ for this pattern would be: 
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Logical relationships between whole patterns are derived 
from the matrices θ and φ, and next and shift are 
calculated accordingly. 



4. RSPS 
An important advantage of the RSPS algorithm is 

that it can be easily generalized to handle input 
patterns which, in SQL-TS, are expressed using the 
star. In general, a star such as *Y denotes a maximal 
sequence of one or more tuples that satisfy all the 
applicable conditions. For example if predicate pj is 

                        pricetpricet ii .. 1−< , 
then *pj matches sequences of records with decreasing 
prices. Now consider a more generalized example with 
the following predicates: 

pricetpricettp ii ..)( 11 −<=  
pricetpricettp ii ..)( 12 −>= . 

In this case *(*p1,*p2) matches the sequences of records 
with recurring patterns of decreasing prices followed by a 
period of increasing prices. Consider the following SQL-
TS example. 
 
Example 2: We are interested in finding the occurrence 
of the following pattern in Intel’s stock price: an 
increasing period of time leading to repeated occurrence 
of a price between $30 and $40, followed by a period of 
decreasing price, followed by another period of 
increasing price, followed by another period of decrease 
leading to a price below $25. The query written in SQL-
TS is: 
 

SELECT X.next.date, X.next.price,  
  S.previous.date, S.previous.price 
FROM quote 
 CLUSTER BY name, 
 SEQUENCE BY date 
 AS (*X,*(Y,*Z,*T),*U,V) 
WHERE  
 X.name=”Intel” 
 AND X.price > X.previous.price 
 AND 30 < Y.price 
 AND Y.price < 40 
 AND Z.price < Z.previous.price 
 AND T.price > T.previous.price 
 AND U.price < U.previous.price 
 AND V.price < 25 
 

Therefore our pattern predicates (on input tuple\ t) are: 
 

p1(t) = (t.price > t.previous.price) 
 p2(t) = (30 < t.price <40) 
 p3(t) = (t.price < t.previous.price) 
 p4(t) = (t.price > t.previous.price) 
 p5(t) = (t.price < t.previous. price) 

 p6(t) = (t.price < 25) 
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Figure 1: Illustration of nested recurring pattern in the 
input data in Example 2 

X Y Z T U VX Y Z T U VX Y Z T U V  
Figure 2: State model for Example 2 

 
The calculation of logic matrices θ and φ remains 

unchanged in the presence of nested stars patterns; thus, 
the formulas given in Section 3 will still be used. 
However, the calculation of the arrays next and shift must 
be generalized for nested star patterns as described below. 

At runtime we maintain an array of counters (one per 
pattern element) to keep track of the cumulative number 
of input objects that have matched the pattern sequence so 
far. For instance, if the first pattern element is a star that 
matched five elements in the input and the second pattern 
element is a non-star, matching only one input element, 
and the third element is a star matching two input 
elements we will have count1 = 5, count2 = 6, and count3 
= 8.  
4.1 Run-time Support for Nested Stars 

As mentioned earlier, at runtime we maintain an array 
of counters to keep track of the cumulative number of 
input objects that have matched the pattern sequence so 
far. Each element of this array is an array itself, since the 
star pattern can match different parts of the input stream 
in a single run. As such, we need a counter to keep track 
of the number of matched elements for each part.  

For instance, suppose that the previous query is 
applied to our input stream with the following sequence 
for t.price: 

26,28,29,31,29,27,26,27,28,32,            
31,29,27,26,27,28, 26, 25, 24 

Figure 1 illustrates the nested recurring pattern of the 
above dataset. After running the query, the array of 
counters will contain the following values: 

31 =count  10,42 =count  14,73 =count  
16,94 =count  185 =count  196 =count  

 
4.2 Proposed Algorithm for Patterns with 

Nested Stars 
As described above, some of the counters have more 

than one cumulative value. We shall employ these values 
in the algorithm proposed here for a pattern with nested 
stars. 



RSPS Algorithm: 
),(* jiOPS   

11 ←← ji  
WHILE ))()(( niandmj ≤≤    

/* m is the length of the pattern and n is the length of the input data */ 
jR  = {k| k∃  s.t k 1),(& ==≤ } kjAj

 /* jR  presents all possible nested star element of a sub-patterns start at k and end at j */   
IF the current input element satisfies the pattern,  
THEN  

1+← ii  
IF jR  is empty 

1+← jj   ,    
ELSEIF  jR  is not empty and ),(~ iRSat j     /* ),( iRSat j  returns the set of pattern elements 

*/  1+← jj                                                     /* in jR  which satisfies i */ 
ELSE 

)),(max( iRSatj j←    
OTHERWISE (i.e. when the current input element doesn’t satisfy the pattern) 

IF  jR  is empty or ( )max( jRj == and jp  is tested for the first time) then 

• reset j (the index in the pattern) to next(j) and 
• reset i (the index in the input) as follows:  

   ))1)()(((min −++−= jnextjshiftcountjii  
IF jR is not empty and )max( jj RR − is empty then 

• 1+← jj  
IF jR is not empty and )max( jRj == and )max( jj RR − is not empty then 

• ))max(max( jj RRj −←  

Figure 1 : RSPS Algorithm 

We represent a pattern as a finite state model in which 
elements of the pattern are the states of the model. Stars 
and nested stars are coded in state transitions.  Figure 2 
illustrates a state diagram for Example 2.  To develop the 
RSPS algorithm, the next step will be creating an 
adjacency matrix based on the state model of the pattern. 

The following adjacency matrix presents the state 
model of Example 2: 

A=
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110000
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000011

 

In the above matrix, the elements of patterns 
(X,Y,Z,T,U,V) were represented as (1,2,3,4,5,6) 
respectively.  Hence A(1,1) = 1 means that p1 (the first 
element of the pattern) is a star element.  If A(j,k)=1 and 

jk < ,then pj is the last element of a nested star sub-
pattern. For instance, in the above adjacency matrix, the 
4th row represents the state T and A(4,4) = 1 means that T 
is a star element. Furthermore, since in the same row 
A(4,2) = 1 , we conclude that T is the last element of a 
nested star sub-pattern, starting from Y.   In the RSPS 
algorithm, for each row j, we define Rj which includes 
every k, )( jk ≤ such that A(j,k) = 1. For instance, in 
Example 2, R4 = {2,4}. In Figure 1 we describe the RSPS 
algorithm in detail. 

The difference between state models in OPS and 
RSPS is that the RSPS model may include right to left 
transitions; however in the OPS state model we only face 
left to right or  self loop transitions. Note that in both OPS 
and RSPS, left to right transitions are only between 
adjacent states.   

To complete the RSPS algorithm, we must now 
specify the computation of shift(j) and next(j) in the 
presence of nested stars. 



4.2.1 Finding shift and next for the Nested Star 
Case 

Consider the following sample graph based on the 
matrix θ  (excluding the main diagonal): 
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Figure 2: Matrix θ 

The entry θjk in our matrix correlates pattern 
predicates pj with pk, k < j, when these are evaluated on 
the same input element. Therefore, we can picture the 
simultaneous processing of the input on the original 
pattern, and on the same pattern shifted back by j – k. 
Thus the arcs between nodes in our matrix above show 
the combined transitions in the original pattern and in the 
shifted pattern. In particular, consider θjk where neither pk 
nor pj are star predicates; then after success in pj and pk, 
we have a transition to 1+jp  in the original pattern, and to 

1+kp  in the shifted pattern. This transition is represented 
by an arc θjk → θj+1,k+1. However, if pj is not a star 
predicate, while pk is, then the success of both will move 
pk, to pk,+1, but leave pj unchanged. This is represented by 
the arc θjk → θj,k+1.  

Here is an example to clear the concept. Suppose we 
have a pattern with 6 elements p1 through p6. We wish to 
evaluate the possible transition from the fifth element of 
the original pattern and the third element of the shifted 
pattern by two simultaneously on the same input element.  
In other words we are to evaluate the third and the fifth 
elements of the pattern on the same input element. Now 
assume that p5 is a star element and p3 is not a star 
element. Therefore, the possible transitions form θ53 
would be to θ54 and θ64. These transitions are illustrated in 
the above matrix as follow:  

 
 

 

 

Figure 3: Example of transition in matrix θ 

In the nested star situation, there is another possible 
transition which is a back edge when the last element of 
the nested star sub-pattern satisfies the previous input 

element but not the current one. In this case, before going 
forward to match the current input element with the next 
pattern element, the algorithm evaluates the input element 
against the first element of the nested star sub-pattern. 
The graph will thus have a back edge.   

In general, we note that only some of the arcs listed in 
the matrix above represent valid transitions and should be 
considered. The set of valid transitions also depends on 
the values of θ. In particular, since all the predicates in 
the pattern must be satisfied by the shifted input, every θjk 

= 0 entry must be removed with all its incoming and 
departing arcs: we only retain entries that are either 1 or 
U.  

The directed graph produced by this construction will 
be called the Implication Graph for pattern sequence P, 
and will be denoted by Gp. For each value of j  this graph 
must be further modified with entries from φ to account 
for the fact that jth element of the pattern failed on the 
input. This is done via replacing the jth row of Gp (i.e., the 
row that starts with θj,1) with the jth row of matrix φ, and 
removing all rows and arcs after j. In addition we 
recompute the arcs from row j – 1 to row j according to 
the new values of elements in row j.  

Thus, if element k is a star, there are up to two arcs 
from θj-1,k to row j: one to φjk and one to φj,k+1. If element k 
is not a star, then there will be an arc only from θj-1,k to 
row j that goes to φj,k+1. Furthermore, all the original Gp 
entries in rows up to and including j – 1 will remain 
unchanged, and so will all arcs leading to entries in these 
rows. 

Again we assume that the end nodes of the arcs are 
either U or 1; but when such nodes are 0 the incoming 
arcs will be dropped. The resulting graph will be called 
the Implication Graph for pattern element j, denoted j

pG ; 
this graph will be used to compute shift(j) and next(j). 

Let us consider Example 2 once more and calculate 
the matrices θ and φ: 
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Since p1, p3, and p5 are star predicates, p4 is a nested 

star predicate, and p2 and p6 are not star predicates, the 
Implication Graph for our pattern sequence is as follows:  
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We now assume that we have a mismatch in presence 
of the current input data and the sixth element of the 
pattern. We thus need to construct 6

pG . We do so by 
replacing row 6 of Gp with the row 6 of φ and update the 
outgoing arcs from the row 5 to the new row 6. We will 
thus have:  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
↓

−→

−

−

−

−

=

UUUUU

U

U

U

U

G p

010

01

0
6

 

Consider now the node θ41 in this graph. Observe that 
there are several paths consisting of either 1 node or U 
nodes that take us to nodes in the last row of the matrix. 
Therefore, the input shifted by 4 can succeed along any of 
these paths. However, there is no path to the last row 
starting from node θ31: thus, 3 is not a possible shift. Also 
there are no paths to the last row starting from θ21 and θ11; 
thus shifts of size 2 and 1 can never succeed. Therefore, 
we conclude that shift(6) = 3. 

4.2.2 Computation of shift(j) and next(j) 
from j

pG  

A general definition of shift(j) is as follows: 
Shift: Let P denote the search pattern, and let 

∃= |{)( sjσ  a path from 1,1+sθ  to a node in the last row 

of j
pG }. Then : 

• If the set )( jσ  is not empty, then 
))(min()( jjshift σ= . 

• If the set )( jσ  is empty and 01 ≠jφ  then shift(j) = j 
–1. 

• If the set )( jσ  is empty and 01 =jφ  then shift(j) = j. 

Next: Multiple paths leading to the last row were 
acceptable for shift, but they are not acceptable for next, 
since this must return a value that uniquely determines the 
point from which the search must be resumed. Therefore, 
let us say that a node in our j

PG graph is deterministic if 
there is exactly one arc leaving this node, and the end-
node of this arc has value 1 (a deterministic node cannot 
therefore take us to a U node or to several 1 nodes). Thus, 
we start from 1,1)( +jshiftθ , and if this is not deterministic, 
then we set 1)( =jnext . Otherwise, we move to the 
unique successor of this deterministic node and repeat the 
test. When the first non-deterministic node is found in 
this recursive process, )( jnext  is set to the value of its 
column. If the search takes us to the last row in j

PG  , that 
means that none of the input elements previously visited 
needs to be tested again: thus ).()( jshiftjjnext −=  

For the example at hand, there is a non-zero path from 
node θ41 to φ63, thus shift(6) = 3. We now consider  θ41 = 
1 and see that this is not a deterministic node, since there 
is more than one arc leaving the node: one back edge to 
 θ21  and one to θ52.Thus, we conclude that 1)6( =next . 

Despite the fact that the Implication Graph for RSPS 
may have some back edges, the computation for the 
shift(j) and next(j) is based on the same formula as the 
star algorithm. Suppose that there is a path from 1,yj−θ to 
the last row of the j

PG .   Also assume that there is a back 
edge from 1,2−jθ  to the 1,yj−θ  and there is a path from 

1,2−jθ  to the last row. Thus  
 

=)( jσ )2}(2,{ >−− yjyj  
and  
                  Shift(j)=min( )( jσ ) 
 
Therefore the existence of a back edge in the 

Implication Graph does not have any impact on the 
calculation of shift(j) and  therefore next (j). 



5. Experimental Results 
We perform a comparison here between RSPS, OPS 

and naïve search. We couldn’t compare our results to any 
other approaches as there was no other pattern search 
algorithm in the same context. Even OPS was not able to 
handle the patterns with the nested stars.  

To assess performance, we count the number of 
passes over the same input element while tested against a 
pattern element for both algorithms. The speedups 
obtained range from modest (simple search pattern 
without any recurring sub-pattern), to dramatic (more 
than two orders of magnitude obtained on complex 
patterns found in actual applications).  We run RSPS over 
two set of datasets: stock market data and network data.  
5.1 Stock Market Data 

In stock market, there are a set of common chart 
patterns that can be very useful for technical analysis. 
Examples of such chart patterns are Double Bottom (two 
consecutive local minima that are roughly equal, with a 
moderate peak in between), Triple Top (three equal highs 
followed by a break below specific price) and Ascending 
Triangle (bullish formation that usually forms during an 
uptrend as a continuation pattern). In the following we 
show the power of RSPS in finding those patterns. 
For instance, we ran the following patterns which reflex 
the search for a set of repeated consecutive relaxed 
double bottom in stock market data for a given company.   
Example 3: 
SELECT X.NEXT.date, X.NEXT.price, 
 S.previous.date, S.previous.price 
FROM company 
 SEQUENCE BY date 
 AS *(X,*Y, *Z, *T, *U, *V, *W, *R, S) 
WHERE X.price >= 0.98 *X.previous.price 
 AND Y.price < 0.98 *Y.previous.price 
 AND 0.98*Z.previous.price < Z.price 

 AND Z.price < 1.02*Z.previous.price 
 AND T.price > 1.02 * T.previous.price 
 AND 0.98*U.previous.price < U.price 
 AND U.price < 1.02*U.previous.price 
 AND V.price < 0.98 * V.previous.price 
 AND 0.98*W.previous.price < W.price 
 AND W.price < 1.02*W.previous.price 
 AND R.price > 1.02*R.previous.price 
 AND S.price <= 1.02*S.previous.price 
 
We also ran RSPS for a similar query to Example 4 as 
following: 
Example 4: 
SELECT X.NEXT.date, X.NEXT.price, 
 S.previous.date, S.previous.price 
FROM company 
 SEQUENCE BY date 
 AS (X,*Y, *Z, *T, *U, *V, *W, *R, S) 
 
Note that there is no (*) in front of the pattern in the last 
example. Table 1 compares the OPS and RSPS speedups 
for these patterns. As it is illustrated in Table 1 the 
speedups we obtained from running several queries were 
quiet dramatic (faster by up to a factor of 100).  
The following are interesting observations from our 
experiment. 
• RSPS speedup depends on the nature of the pattern 

query and the input itself. More inter-dependencies in 
between pattern elements make it possible to gain 
more speedup through RSPS. 

• RSPS improves search speed even when there is no 
match for a given query. This case indeed is very 
interesting to study, when we want to make sure 
there is no occurrence of a given pattern query in a 
sequence or data stream. 

• When there is no inter-dependency between the 
pattern elements, the RSPS speedup gets close to 
naïve search. 

OPS * on 100 simulated queries 
similar to Example 3 Company 

Ticker 
Sequence 
Length 

RSPS 
Speedup 

(Example 3) 

Number of
Matches 

Mean Min Max Stdv

RSPS 
Speedup 

(Example 4) 

Number of
Matches 

DELL 4169 3.94 0 28.03 6.64 73.61 22.22 3.12 14 
EBAY 1615 3.28 0 11.36 2.79 29.53 7.25 3.00 6 
IBM 10863 20.08 2 66.43 11.16 139.90 44.60 12.32 54 
GE 10863 16.21 4 58.55 9.27 150.94 43.59 9.35 78 

COKE 3743 9.77 0 48.84 8.57 154.52 40.00 7.55 20 
PEPSI 1480 8.35 2 28.55 8.59 62.80 15.75 7.68 12 
SONY 5520 11.2 1 27.58 4.89 85.16 20.44 8.20 29 

WMART 8204 8.04 3 64.94 9.35 214.27 55.72 5.04 72 
DIJ 6000 92 1 86.93 37.11 201.20 43.97 85.22 14 

Table 1: RSPS performance for selected companies for a given query (Example 3) 
     Gray area illustrates RSPS performance on 100 simulated queries similar to Example 3  



Data Port # Sequence Length RSPS Speedup 
 (Triple Bottom) 

RSPS Speedup  
(Double Top) 

Load 3 8000 13.0 24.6 
Packet Rate 4 8000 21.6 24.1 

Packet Collision 16 8000 4.4 

• RSPS pattern generalization provide a simple 
mechanism to relax the query when there is no 
occurrence of the pattern in the data. 

To evaluate RSPS power, we employed a simulator 
with the capability of making complex queries around a 
given seed query. In our simulator, a user has the 
capability to modify the number of elements in the query, 
the length of the query and parameters in each element of 
the pattern. For instance assume user is interested in 
Example 4. We treat this query as seed query and make a 
set of queries around this query. We can modify Example 
3 by changing numbers to parameters as following: 
Example 3 (General): 
  
SELECT X.NEXT.date, X.NEXT.price, 
 S.previous.date, S.previous.price 
FROM company 
 SEQUENCE BY date 
 AS *(X,*Y, *Z, *T, *U) 
WHERE X.price >= A *X.previous.price 
 AND Y.price < B *Y.previous.price 
 AND C *Z.previous.price < Z.price 
 AND Z.price < D *Z.previous.price 
 AND T.price > E * T.previous.price 
 AND U.price <= F *U.previous.price 
 AND V.price < G * V.previous.price 
 AND I*W.previous.price < W.price 
 AND W.price < J*W.previous.price 
 AND R.price > K*R.previous.price 
 AND S.price <= L*S.previous.price 
Now user can pick part of this query, drop or add (*) and 
change parameters (A,B ,…) . The following is a sample 
of modified version of Example 3. 
Example 3 (modified): 
 
SELECT X.NEXT.date, X.NEXT.price, 
 S.previous.date, S.previous.price 
FROM company 
 SEQUENCE BY date 
 AS *(X,*Y, *Z, *T) 
WHERE X.price >= 0.90 *X.previous.price 
 AND Y.price < 0.88 *Y.previous.price 
 AND 0.98*Z.previous.price < Z.price 
 AND Z.price < 1.05*Z.previous.price 
 AND T.price > 1.05 * T.previous.price 
 AND V.price < 0.97 * V.previous.price 
 AND 0.96*W.previous.price < W.price 
 AND W.price < 1.01*W.previous.price 
 AND R.price > 1.03*R.previous.price 
 AND S.price <= 1.02*S.previous.price 

We ran the simulator to generate 100 queries and ran 
RSPS to find the pattern. The mean, min, max and 
variance of the RSPS speedup over naïve search are 
illustrated in Table 1. As it shows in Table 1 RSPS 
performance may varies dramatically (for instance form 
200 to 37 in DIJ data) due to the query pattern.  
5.2 Network Data 

Understanding the nature of traffic in high-speed, 
high-bandwidth communications is essential for 
engineering and performance evaluation. Hence, finding 
patterns is an important essential for modeling the 
network behavior. Examples of these patterns are similar 
to stock market including Triple Bottom (three equal lows 
followed by a breakout above a certain level).  

For this experiment we exploited a sample of network 
data. There are 16 ports on the routers that connect to 16 
links, which in turn connect to 16 Ethernet subnets (Sn). 
Note that traffic has to flow through the router ports in 
order to reach the 16 subnets. There are three variables: 
• Load: a measure of the percentage of bandwidth 

utilization of a port during a 10 minute period. 
• Packet Rate: a measure of the rate at which packets 

are moving through a port per minute. 
• Collision Rate: a measure of the number of packets 

during a 10 minute period that have been sent 
through a port over the link but have collided with 
other packets.  

Data has collected for 18 weeks, from '94 to '95. There 
are 16,849 entries, representing measurements roughly 
every 10 minutes for 18 weeks. Figure 6 illustrates an 
example of collected packet rate data. For this experiment 
we illustrate the RSPS performance for on ports #3, #4, 
and #16 for load, packet rate and packet collision 
respectively.  

Similar to stock market data we ran the simulator to 
generate 100 queries for a triple top query and ran RSPS 
to find the pattern. The mean and variance of the RSPS 
speedup over naïve search are illustrated in Table 1. As it 
is illustrated in Table 2 the speedups we obtained from 
running several queries were up to 25 times. Due to the 
space limit we only show the result of running RSPS on 
selected ports with better speedup. Similar to stock 
market data the RSPS performance may varies radically 
due to the pattern query and the data itself. 
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Table 2: RSPS performance of network data
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Figure 6: Example of packet rate for a given port 

6. Related Work 
Sequential pattern search is an important problem 

with broad applications, including the analysis of 
customer purchase behavior, web access patterns, 
scientific experiments, disease treatments, patient 
database, natural disasters, DNA sequences, network data 
analysis etc. Such problems have attracted researchers 
from different communities.  

A major portion of research in this area has focused 
on discovering frequent patterns in sequential data (such 
as time series). The main focus of these works is to 
discover frequent patterns through approximation, 
transformation [1] and statistical inference. See for 
example, the approach taken by artificial intelligence 
researchers [15] [25] [9]. In the database context, where 
input data is usually much larger, the problem has been 
studied in a number of recent papers [2, 3, 9, 18, 26]. We 
are not looking for frequent patterns in time series; rather 
we are interested in exact match of a pattern in the SQL-
TS level.  

Recently there has been a great interest in processing 
streaming data. STREAM [4, 27] is a data stream 
processing project whose focus is on computing 
approximate results and to understand how to efficiently 
run queries in a bounded amount of memory. The Aurora 
[6] system allows users to specify quality-of-service 
requirements for queries, and then uses those 
specifications to determine how and when to shed load. 
Other recent research has focused on developing 
algorithms to perform specific functions on sequenced 
data. Gehrke et al. [10] considers the problem of 
computing correlated aggregate queries over streams, and 
presents techniques for obtaining approximate answers in 
a single pass.  

Yang et al. [29, 30] discusses data structures for 
computing and maintaining aggregates over streams. 
Sadri et al. [23] propose SQL-TS, an extension of the 
SQL language to express sequence queries over time-
series data. Finally, there has been a spate of work on this 
topic more recently, especially from the group at IIT-
Bombay [8, 11, 21, 24]. Multi-query optimization 
typically shares relational sub expressions that appear in 
the plans of multiple (snapshot) queries. The Telegraph 
and TelegraphCQ [7] project have developed a suite of 
novel technologies for continuously adaptive query 
processing and on meeting the challenges that arise in 
handling large streams of continuous queries over high-
volume, highly-variable data streams. Our proposed 
RSPS algorithm is a pattern detection mechanism that 
isn’t bound to keeping the whole history of the sequence 
and trying to optimize the search by  exploiting the inter-
dependencies between the elements of a sequential 
pattern to minimize repeated passes over the same data. 

7. Future work and conclusion 
In this paper, we described the RSPS algorithm which 

gives us a very expressive powerful tool to look for 
complex nested recurring patterns in sequential databases. 
By exploiting the inter-dependencies between the 
elements of a sequential pattern, we minimize repeated 
passes over the same data which impressively speedups 
the search process. 

    As RSPS provides a general framework to search 
for any pattern in SQL level, many applications in 
different domains could be beneficiaries of this powerful 
technique. 

   We are currently investigating to get even more 
speedup by employing statistical learning techniques to 
RSPS. 

   Our final goal is twofold: first, extending RSPS 
algorithm to be able to search in multidimensional data. 
Success in this matter will give us the ability to look for 
complex patterns in multidimensional domains such as 
images, trees and graphs. Second, considering that most 
streaming applications have a limited buffer size for the 
transient data, in order to make RSPS applicable to 
streaming applications, we need to address the buffer size 
issue. Since RSPS minimizes repeated passes over the 
same data by precomputing shift(j) and next(j), it is 
obvious that in every pass we can remove some of the 
input data from the buffer and read the same amount of 
new incoming input data to the buffer.  Our goal at this 
stage is to find an optimal buffer size along with the cost 
of processing. We are also looking to combining the 
approximation and sampling techniques to RSPS 
algorithm to look for complex patterns in stream data 
with even more speedup. 
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